
$HOME MOVIE – Tools for
Building Demos on a Sparcstation

Stephen A. Uhler –Bellcore

ABSTRACT

$HOME MOVIE is a suite of tools for the capture, editing and playback of window
system sessions on a Sun Sparcstation. It includes ISDN voice quality audio, video, and a
VCR-like user interface. At any time while the window system is running, a recording may
be started, generating a complete log or script that captures the changes to the display.
Simultaneously, an audio script is generated, containing any verbal descriptions, or sounds
present. Once theserecordingshave been made, they can be re-arranged, edited, annotated
or set to music, using the $HOME MOVIE sound and image editing tools. The resulting
movie,can be played back on the display in real time, and thus provides a convenient way to
document and demonstrate interactive software systems.

Introduction

Another demo. The boss walks in with another
VIP just as you are starting to get some work done.
Now you have to find a working version the pro-
gram, crate the equipment into the other room, set it
up, and pray everything holds together for the next
ten minutes.

Presentation of high quality software demons-
trations requires not only the appropriate hardware
and software environment, but an expert user to
manage the interface and often another person to
explain what is happening. Existing demonstration
methods include video-taped examples, which suffer
from poor resolution and require special equipment,
or special demonstration software with no audio
capability.

$HOME MOVIE is a system for the Sun Sparcs-
tation that solves the problem of preparing demons-
trations of interactive software systems. $HOME
MOVIE includes audio and video, with a television
and VCR-like interface supporting pause, play, slow
motion, fast forward, program selection and volume
control. It requires no advance setup, and can be
turned on at the spur of the moment. It is easy to
add background music, or some video special effects
and wind up with a snazzy self-contained demo.

How $HOME MOVIE Works

Capturing the Demonstration.
There are two methods that can be used to cap-

ture a session. With the first method,input saving,
the inputs to the application are saved, along with
the times between inputs. To replay the session, the
saved inputs are re-sent to the program that re-
executes the session. With the same inputs as origi-
nally used, in the same order and relative timing, the
visual results will be identical to the recorded ses-
sion. In the second method, all changes to the
display, a display list are saved, along with the

appropriate timing information. A stand alone driver
program then interprets the display list to recreate
the display images.

The input saving method has several advan-
tages. For simple programs that require only key-
board and mouse input, the stored representation of
the input can be made compact. In addition, captur-
ing input can often be accomplished with no
modifications to the program, by intercepting all
input before it is sent to the application. Finally,
since the demo’ed program is actually running,
arrangements can be made for the viewer to take
over the execution of the demo, and actually run the
program. This capability is quite useful for training
and on-line documentation. JYACC [1] is an exam-
ple of a commercial system that provides this type
of capability. Another system Whimsy [2] uses the
input saving technique in a windowing environment
by capturing an applications inputs to the window
system. Whimsy is intended more for testing than
for demonstrations.

Unfortunately, theinput saving technique has
some limitations. For many systems it is difficult, or
even impossible to capture the entire input to an
application. In an network environment, there can
be subtle interactions between other programs on the
network, as well as non-repeatable interactions with
the operating system or file system. To recreate the
demo, not only would the demo program need to be
re-run, but so would other programs on the network,
and all referenced files, network hosts, and machine
states; clearly a monumental task. Finally, the play-
back can’t be sped up or slowed down, but can only
run at the current speed of the program. Often it is
in just this kind of transitory environment, with new
software in development, that a demo is required.
Recreating the entire state simply isn’t possible.

USENIX – Winter ’91 – Dallas, TX 127

$HOME MOVIE Uhler

With the display list method, which is used by
$HOME MOVIE, only the actual changes to the
display are saved. None of the program input is
required. Consequently, the program to be demo’ed
is not needed for playback, and neither is the com-
puting environment required to make the demo pro-
gram run. An independent display list driver is used
to recreate the applications display in real time. The
demo is completely self-contained, can be distributed
without compromising proprietary software, and can
be run on a generic computing platform.

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

Audio

Input

Window

Server

Display

Applications

Home Movie

Interface

Video
Data

Audio
Data

Capture

Figure 1: $HOME MOVIE Recording Setup

How the Video Portion is Saved.
To be effective for capturing demos, the demo

software needs to be un-obtrusive. The application
must be completely unaware that its output is cap-
tured, and no changes to the application, or the way
it is run can be required. In addition, the user
should be able to turn the demo capture on or off at
will, with no prior planning.

For $HOME MOVIE to meet this goal, the win-
dow system server (not the application) is modified.
All changes the window system makes to the
display, along with timing information, are written
onto a socket to be read by a separate process that
saves the data in a file, thevideo display list. Figure
1 is a diagram of the demo capture setup.

The changes to the display are represented as
the names of and arguments to the primitives that
the window system uses to change the display.
When a display primitive is invoked by the window
server, a record of the invocation is generated.
Recreating the display requires little more than read-
ing the display list, then invoking the display primi-
tives that were used by the window system to create
the display in the first place.

The primary display primitive is abitblt [3]
(sometimes called a raster-op) which is used to
change a rectangular set of pixels on the display.
The bitblt operations are used to display images,
print text, move the cursor, and update windows.
The bitblt operations used by the window system
often involve combining bitmaps (or pixmaps) that
reside in memory with bitmaps in the frame buffer
memory; the bitmaps that map to pixels on the
display. For these operations it is necessary to keep
track of not only the prior contents of the display,
but to keep track of the contents of the memory bit-
maps as well.

Although the entire demo session can be cap-
tured strictly withbitblt commands, some additional
graphics primitives are used for improved efficiency.
In addition to bitblt, these additional primitives are
points, lines, and circular arcs. Still more graphics
primitives, such as splines or polygons can be
included in the display list as well, but are just as
easily constructed out of the above primitives. The
complete list of commands currently used by $HOME
MOVIE and generated by the window system is
shown in Table 1.

The first three items,Bitcopy, bitblt, and Point
are various flavors ofbitblt commands. TheData
item represents image data.Arc and line are addi-
tional drawing primitives added for efficiency.
Display andFree are used for book keeping,Time is
for time stamps andCommentdata is ignored, and
can be used by other programs that process the
display lists.

Table 1: Display List Commands__
name description________________________________

Bitcopy bitblt - without source
Bitblt bitblt - with source
Point Draw a point
Data Image data________________________________
Arc Draw an elliptical arc
Line Draw a line________________________________
Display The display bitmap
Free Free image data
Time Time stamp
Comment Comments________________________________|

|
|
|
|
|
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

When the source or destination bitmap to a
bitblt command is first referenced, its size and bit
image are saved in the display list. When the play-
back program reads in the image for that bitmap, the
image is cached for later use. The next time that
bitmap is referenced, its image is already available
in the video playback driver, so the image need not
be repeated in the display list. For example, to
display text in a window, the first time a character of
a given font is referenced, the image of the entire
font is saved in the display list. Every other charac-
ter in the font is displayed by saving thebitblt

128 USENIX – Winter ’91 – Dallas, TX

Uhler $HOME MOVIE

command required to copy that character from the
already saved font image on to the display. The
amount of memory required to cache the bitmaps
varies with each application, but it is never more
that was required of the server in the first place.

Figure 2: Initial Display of Superbook Demo

Code in the window system server keeps track
of bitmap image changes, such as when a client
application replaces one image with another, or
when a bitmap is destroyed so that its contents are
no longer required. In either case, abitmap free
command is saved in the display list, indicating a
particular bitmap is no longer needed, permitting the
display list driver to remove the image from its bit-
map cache. The server then resends the new image
data to the display list when required.

For most applications, the number of images
that need to be saved in the display list is small,
usually several fonts, icons, and cursors. All other
display changes are made by combining these few
images usingbitblt, or other graphics primitives.
When recording starts, the initial display image is
saved in the display list, just as the first change to
the display is about to occur. Each additional image
is saved on the display list just as the first display
primitive that references it is invoked. The window
system server keeps a table of all images in use by

the server, so it can readily find those that are
required for the demo.

In one sample $HOME MOVIE session, a 13
minute demo of Superbook [4], a total of 29 images
were saved in the display list. The image of the
display when recording begins is saved, as well as
image data for obscured windows that will be
exposed during the demo. The rest of the images
consist of cursors, fonts, icons, and graphics images
specific to the application. The entire demo is
created by performingbitblt transformations on the
29 images. Figure 2 shows the initial display of the
Superbook demo, with the $HOME MOVIE user inter-
face above the top of the display. Figure 3 contains
the images that were required to reproduce the rest
of the demo. The first few images are the fonts used
by Superbook, each saved in the display list as the
first character in the font was referenced. The fonts
are followed by various cursors and icons either by
Superbook or the window manager. The next image
is an illustration presented to the user by Superbook,
whereas the last image contains the contents of a
window that was obscured on the initial display.
Table 2 lists a summary of the images and sizes
required for this demo. The total stored size of the
images was about 60 kilobytes.

USENIX – Winter ’91 – Dallas, TX 129

$HOME MOVIE Uhler

Because the display list stores low levelbitblt
and drawing primitives, the video data format is
window system independent. It has no notion of
fonts, cursors, images or windows; just operations
that combine generic images. These are the same
operations that are needed by all window systems
that use a memory mapped model of the display.
Consequently this method of recording demos is
applicable to many window management systems,
with no particular bias to any one in particular.

Table 2: image breakdown__
type number size (as displayed KB)___

cursors 13 1
fonts 8 18
windows 3 83
images 2 51
initial display 1 130___|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

Figure 3: Collection of Saved Images used by The Superbook Demo

The window system generates timing informa-
tion periodically, typically in the maindispatchloop
in the server. This timing information is saved as a
time-stamp in the display list. A time-stamp is a 32
bit quantity that represents 100ths of seconds elapsed
since the window system session began. This per-
mits about eight months of display information to be

kept in a single display list. The display list driver
program detects time-stamp overflow, thus permit-
ting video scripts of almost unlimited duration.
Absolute time information is used instead of time
differences because it is easier to avoid rounding
errors. It is also easy to alter the notion of time and
play the display list back either faster or slower than
it was originally generated. The video driver pro-
gram understands a specialtime offsetcommand that
can be inserted into a display list at any point to add
or subtract a fixed amount of time at any point in the
display list without requiring the remaining time-
stamps to be adjusted.

An arbitrary format was chosen for the display
list data. In this format, each command consists of a
16 bit command identifier, followed by one or more
arguments, as indicated by the command type. The
display lists are normally stored in compressed form
[5], and typically take less than 1000 bytes per
second of demo.

In situations where the space consumed by the
display list must be minimized, or where the video
data needs to be transmitted in real time instead of
saved in a file for later use, there are alternate data
formats that vastly reduce the space required. A
bitblt command is often similar to the previously

130 USENIX – Winter ’91 – Dallas, TX

Uhler $HOME MOVIE

issuedbitblt command. In 72% of the 89000bitblt
commands used in the Superbook demo, six or more
of the nine arguments to the command were identi-
cal to the previousbitblt command. By choosing a
display list format to encode differences from the
previous command, substantial data compression can
be achieved. In the extreme case, whereASCII termi-
nal like output is prevalent, mostbitblt commands
can be encoded in a single byte. The usual case on
the display in this instance is for the next character
on the current line to be displayed. A source offset
into the current font bitmap plus a destination offset
on the display equal to the previous character width
can be represented as a single character.

Figure 4: Sample Roll–A–Credit Output

How the Audio Portion is Saved.
The audio portion of the demonstration is saved

separately from the video script and the window sys-
tem server. It is stored in a file in ISDN style µ-law
format [6]. The µ-law format consists of 8000 8-bit
samples per second. The audio can be voice, music,
special effects, or other noise such as key-clicks or
machine noise.

There are several reasons to keep the audio
information separate from the video data. First of
all, there is a large body of existing tools [7]

available to manipulate the audio data. These tools
can be used as is.

The large data rate difference between the
audio and video is a more compelling reason to keep
the audio separate from the video portions of the
demo. Whereas the audio portion of the script
requires 8000 bytes per second, the average
bandwidth for the video display list is only one tenth
that. At well under a thousand characters per
second, it is possible to transmit the video data in
real time over common dial-up lines. Although this
might not be beneficial for demos that require sound,
it is invaluable for providing remote dial-up window
system services, using the same tools as the required
by $HOME MOVIE.

How the Video and Audio Data are Synchronized.
Synchronization between the video and audio

portions is maintained though the embedded timing
information in the video script, and the fixed data
rate format of the audio script. At regular intervals -
about ten times per second, a timing mark is embed-
ded in the video display list, representing the elapsed
time in 100ths of seconds since the beginning of the
script. That time, when multiplied by 80, represents
the current byte offset in the audio file, thus

USENIX – Winter ’91 – Dallas, TX 131

$HOME MOVIE Uhler

maintaining synchronization to within 10ms, which
is sufficient for demos.

Editing A Demonstration Script
Editing The Video portion

A Separate utilityRoll–A–Creditwas developed
to generate text annotations, titles, and credits, which
can be inserted into the video script files.
Roll–A–Credit is a stand alone utility program that
generates video display lists in the same format as
the modified window system server. Words or
phrases in one of several large fonts are animated by
scrolling the text slowly on top of the current
display. The initial and final position of each text
phrase, the speed of scrolling, and the scrolling
sequence is all under user control. The
Roll–A–Credit display list is then inserted into a
demo display list to effect the annotation. The input
to Roll–A–Credit consists of one or more lines each
containing four fields; 1) a font style and size, 2)
text justification or position, 3) vertical offset from
the previous line, and 4) the text to be animated.
Often several Roll–A–Credit scripts are run consecu-
tively to the same video display list, permitting dif-
ferent groups of text to be animated separately.
Here is an excerpt from the Roll–A–Credit script
used in the Superbook demo.

b-28 c 0 THE END

r-12 c 0 A Cog-Sci Video Production_______________________________________||
|

||
|

The first line of the script causesTHE END to be
animated in a 28 point bold font, centered horizon-
tally, and separated from the following text by the
normal vertical spacing. The rate of animation, size
of the drop shadows, and initial and final conditions
are specified as arguments to the Roll–A–Credit
command. Figure 4 shows a snapshot of
Roll–A–Credit, taken from the credits portion of the
Superbook demo.

The video script files can be converted to and
from an ASCII representation using the program
to_ascii. Once in ASCII, the display lists can be
edited using standard UNIX tools such asawk[8].
Table 3 is a sample of theASCII format. The initial
character on the line is the command type; the
remaining numbers are arguments to the command.
Image data are saved in a hexadecimal representa-
tion. In the example above, the command characters
T, D, B, and L stand for time-stamps, image data
definition, bitblts, and lines respectively. Lines
beginning with "." define the image data. The com-
mand character is followed by the arguments. For
time stamps, it is the elapsed time in seconds. For
bitblts, the most complex command, it is the destina-
tion bitmap number, the offset into the destination
bitmap, the size of the rectangle, thebitblt function,
the source bitmap number, and finally the source bit-
map offset. The other command arguments are

defined similarly.

Table 3, sampleASCII data format____________________________________
T 5.17

D 13 32 16 1

. 198C0000198C0000198C000039CC00

. 0D9B8000001800000018000000180

. 000001800000000000000000000000

. 00000000000000000000000000000

. 00000000

B 2 557 28 16 16 12 13 0 0

B 13 0 0 16 16 12 2 561 26

B 2 561 26 16 16 14 15 0 0

L 2 49 46 22 76 5

L 2 49 46 19 73 5

T 5.63____________________________________||
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|

To illustrate how one might edit a video
display list, calledscript.Z (the display list is stored
compressed), suppose during the course of the demo,
debugging output was accidently turned on while
displaying a line drawing in a window. The debug-
ging text wrecked our drawing. To fix it on play-
back, we can delete the non-line drawing commands
from the display list that were output on the drawing
window. The following command would be run:

zcat script.Z ∨ to_ascii ∨
awk -f fix.awk ∨
to_binary ∨ compress > new_script.Z

The appropriate awk script,fix.awk is:

{

if ($1=="T" && $2<4 && $2>9)

print # Not within the proper time range
else if ($1 != B && $1 != W)

print # Not a bitblt command
else if ($2 != 2)

print # Not destined for the display
else if ($3<46 ∨∨ $4<150)

print # Not inside the window
else if ($3>850 ∨∨ $4>700)

print # Not inside the window
}

Each clause of the awk script examines a line for the
ASCII version of the command, and passes it through
unaltered unless it is one of the commands targeted
for deletion.

Each command in the display list consists of a
line containing of the name of the command, fol-
lowed by its arguments. The playback program, to
be described later, has a mechanism to place marks
in the display list under user control. The user can
watch the demo, and add marks at any point. These
marks can be later used to aid in editing the script.
The programto_binary performs the inverse func-
tion, converting the script back to its binary form.

132 USENIX – Winter ’91 – Dallas, TX

Uhler $HOME MOVIE

Images stored in the display list are represented
in hexadecimalASCII, similar in format tood -x. To
facilitate easier editing, The images can be extracted
from the display list and stored as separate files in a
standard image file format. The images may then be
viewed and edited using standard picture editing
tools, and later re-combined with the rest of display
list.

There is a library of canned video effect scripts
that can be used to join demo scripts together.
These canned scripts, when sandwiched between two
disjoint display lists, provide for smooth transitions
between the two. There are canned scripts for fad-
ing gradually from one display image to another, or
fading to black or white, or pushing the current
display image off the screen with the new one.

The canned scripts work by looking at the two
scripts to be joined, calculating the final image
displayed by the first script, and the initial image
displayed by the second script, then constructing the
primitives (bitblt commands) to generate the desired
transition.

Audio Editing
There is a set of audio editing tools to cut,

paste, and manipulate sections of audio. These tools
include filters for AGC (automatic gain control),
squelch, mixing, stretching and shrinking portions of
the audio script. Thetime_it utility reads a video
display list, and displays the elapsed time to the hun-
dredth of a second at each mark and script merge.
The corresponding audio editing tools are then used
to extract the proper lengths of sound, to match up
with the timings displayed.

The IMG (Incidental Music Generation) system
[9] can be used to compose short pieces of music to
use either as backgrounds under voice, or to call
attention to annotations, titles, or credits. IMG
knows how to compose a music in one of several
different genres. The exact duration of the piece, as
well as its tempo is specified by the user: IMG does
the rest, producing a MIDI [10] file containing the
composition. The MIDI file is then rendered in
software, or fed to a MIDI synthesizer whose output
is connected to the Sparcstation’s audio input.
Either method results in a µ-law rendition of the
composition. Theshell command

compose -l21.4 grass ∨
play_midi > /dev/audio

composes and plays a complete 21.4 second blue-
grass piece.

To add music to a Roll–A–Credit title or anno-
tation sequence,time_it is used to determine the
exact duration of the Roll–A–Credit animation.
Then IMG is instructed to compose a piece of the
proper length, that suits the mood of the demo.
After instrumenting and synthesizing the piece, it is
inserted into the audio track to accompany the

annotation.

Another use for IMG is to dub in background
music underneath the narration in some parts of the
demo. The demo is previewed, adding marks to the
video script to indicate the beginning and ending of
sections that need certain types of background
accents. Either by using IMG, or clips of
prerecorded music, the audio narration can be
highlighted by mixing the music into the proper
location to fit the audio narration or video display.

Playback
The playback portion of $HOME MOVIE con-

sists of three processes, the user interface, the video
driver, and the audio driver. The user interface
accepts mouse hits on buttons as commands from the
user and translates them intoASCII commands that
are sent to both the audio and video display
processes. The audio and video display processes
read and interpret the demo scripts, under the control
of the commands sent by user interface process. A
diagram of the playback setup is shown in Figure 5.
A short shell script,movie, sets up the playback
environment and starts the three playback processes.

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

Display

User

Interface

Video

Driver

Audio

Driver

Audio

Data

Video

Data

Figure 5: $HOME MOVIE Playback Setup

User Interface
VCR, the primary user interface to $HOME

MOVIE, simulates the functions found on a video
cassette recorder. Figure 2 shows a picture of the
user interface, at the top of a demo in progress.
VCR provides a mouse activated button interface to
the $HOME MOVIE playback system. From left to
right it has buttons for rewind, stop, pause, slow
motion, and fast forward. Following fast forward is

USENIX – Winter ’91 – Dallas, TX 133

$HOME MOVIE Uhler

a tape counter, volume down and volume up.
Finally at the right edge is a program button.
Except for the program button, the interface works
just like a standard VCR. The playback start up
script normally starts in just the top inch of the
display, with the VCR program running. The
remainder of the display is used by the video driver
for the demo.

Figure 6: Superbook Demo in an X Window

Using the program button on VCR users can
step though a sequence oftapes, choosing the one
they wish to play. VCR reads a startup script that
maps each tape name shown on theprogram button
into a list of one or more demo scripts which are
played consecutively when that name is selected.

Since the design of the playback system is
modular, the various parts can be easily inter-
changed. By replacing the user interface by a com-
mand file, repeated playback of a sequence of demo
scripts results in completely unattended demos.

Video Playback
The video driver accepts commands from the

user interface and plays back the video script. Nor-
mally the video driver writes directly to the display,
except for the top inch occupied by the user inter-
face.

During normalplay operation, the video driver
reads and processes display commands from the
display list generated when the demo was first
created. The time-stamps embedded in the display
list are compared against the real time elapsed since
the beginning of the script. Whenever the script
elapsed time is greater, the video driver sleeps for
the difference, thus recreating the pace of the origi-
nal demo. If the user selectsfast forward or slow
motion on the user interface, the script elapsed time
is multiplied by a constant other than unity. The
effect is to speed up or slow down the notion of
time, permitting playback either faster or slower than
the original demo.

Audio Playback
The audio driver, like the video driver, also

accepts commands from the user interface. In the
current implementation, those commands are passed
from the user interface through the video driver, so
the playback mechanism can easily be started as a
pipeline by the shell. the commands tell it to read
the audio data from the appropriate point in the
audio file, and send it to/dev/audioto be played out
the speaker. As the video playback is stopped,
started, speeded up or slowed down, the audio driver

134 USENIX – Winter ’91 – Dallas, TX

Uhler $HOME MOVIE

receives synchronization commands from the user
interface so it can determine which byte of the audio
file should currently be coming out of the speaker.

When slow motion or fast forward is selected,
the audio track is processed to run slower or faster
without changing the pitch of the sound track, and
can maintain intelligibility over a wide range of
playback speeds. This is accomplished by either
eliminating or duplicating groups of samples, then
smoothing the edges where the groups abut. The
fraction of samples removed or duplicated deter-
mines how fast the audio track is speeded up or
slowed down.

Figure 7: Shrunken Playback in X

Design Tradeoffs
The low level format for saving the display

data was chosen to be window system independent,
and requires only a simple driver program to play
back the script.

The video and audio tracks are kept separate, in
spite of potential synchronization problems and edit-
ing difficulties, so the tools that manipulate the data
are simpler, and the video portion of the system runs
unchanged for systems with no audio capability.

Implementation Considerations
The current version of $HOME MOVIE was pro-

duced by modifying the MGR [11] window system to
send the video display list information out a socket,
about 300 lines of C code. The X11 [12] version of
$HOME MOVIE is under development, and uses the
same strategy.

There are several ways to play back the demo.
Normally, playback is made to the raw display. The
video driver program is completely self-contained,
and consists of 1600 lines of C code. About 1000
lines comprises thebitblt engine, the remainder
reads and interprets the display list and user inter-
face commands.

The video scripts can be played back into an X
window. The X version of the video driver program,
using Xlib calls, is a 1000 lines of C code. For X
video driver, the display lists are played back in a
window instead of the entire display. This allows
the $HOME MOVIE system to be used in the context
of another application, such as providing on-line
animated help. Figure 6 shows a portion of the
Superbook demo playing back in an X window.

USENIX – Winter ’91 – Dallas, TX 135

$HOME MOVIE Uhler

The playback can be shrunk to a smaller size
than the original recording, permitting playback in
less than display-sized windows. This is a direct
consequence of the geometrical nature of the video
display list format. The drawing commands are
scaled simply by scaling their coordinates. Only the
images need any significant processing, and are
easily reduced in size by integral multiples, although
with a corresponding loss of resolution. Figure 7
shows a portion of the Superbook demo playing back
in three separate windows; full size, half size, and
quarter size.

The audio and video playback portions of
$HOME MOVIE are played by separate processes, so
even though synchronization data is kept to within a
hundredth of a second, due to the granularity of the
UNIX scheduler, the audio and video synchronization
has considerably greater variance. Packaging the
video and audio playback in the same process would
ameliorate this problem to some extent, but at the
cost of some flexibility.

Conclusions

As a test case, a 13 minute demonstration of
the SuperBook hypertext system was prepared. The
video display list averages 791 bytes per second,
whereas the audio requires a constant 8000 bytes per
second. The Superbook movie has been shown
dozens of times to hundreds of people and greatly
reduces the need for expert users to be present.

The changes made to the window system have
a minimal impact on the server performance, and
require no changes to either the user or application
interfaces. Thus a demonstration can be captured
with no prior planning.

The playback interface is familiar, and once
pushing buttons with the mouse is mastered, it is
obvious and easy to use.

Since the $HOME MOVIE playback portion is
small and self-contained, ademo diskette can be
mailed anywhere, providing a self-contained auto-
nomous demo.

References

[1] JAM JYACC Application Manager,Users
manual 1988 JYACC Inc.

[2] Cohn, R.J., Automated Testing of Interactive
Programs,Unpublished memorandum, January,
1987.

[3] Foley, J.D. and VanDam, A.,Fundamentals of
Interactive Computer Graphics, Addison-
Wesley, 1982.

[4] Remde, J.R., Gomez, L.M., and Landaur, T.K.,
SuperBook: An automatic Tool for Information
Exploration -- Hypertext?, Proceedings of
Hypertext ’87. University of NC, Chapel Hill,
1987 pp. 307-323

[5] Welch, T.A., A Technique for High

Performance Data Compression,IEEE Com-
puter, vol. 17, no. 6 (June 1984), pp. 8-19.

[6] Members Technical Staff, Bell Telephone
Laboratories,Transmission Systems for Com-
munications,1959.

[7] Langston, P.S.,UNIX Midi Manual, Sections I,
III, & V, Internal Bellcore Technical Memoran-
dum TM ARH-015440, November, 1989

[8] Aho A.V., Kernighan W.K, Weinbeger P.J.,
The AWK Programming Language,Bell Tele-
phone Laboratories, 1988

[9] Langston, P.S.,PellScore, An Incident Music
Generator, Internal Bellcore Technical
Memorandum TM-ARH-016281, February,
1990

[10] DeFuria, J.S. and Scacciaferro,MIDI Program-
mers Handbook,M&T Publishing Co., 1989

[11] Uhler, S.A., MGR - C Language Application
Interface, Bellcore Internal Technical
Memorandum TM-ARH-010796, December,
1988

[12] J. Gettys, R. Newman, T. Della Fera,Xlib - C
Language X Interface,January 1986.

Stephen Uhler joined Bell
Communications Research at
its inception in 1984, where
he is a Member of the Techni-
cal Staff in the Computer Sys-
tems Research division. He
has worked on computing
environments and user inter-
faces for much of that time,
and is the author of the MGR
window system. Before joining Bellcore, Stephen
was a Member of the Technical Staff at Bell Labora-
tories in Whippany N.J. where he worked on user
interface management systems. He received an M.S.
degree from Case Western Reserve University.
Stephen can be reached via electronic mail at:
sau@bellcore.com or uunet!bellcore!sau .

136 USENIX – Winter ’91 – Dallas, TX

