

Design and Architecture of the
Brazil Web Application Framework

Stephen A. Uhler

Sun Microsystems Laboratories
901 San Antonio Road

Palo Alto, California 94303

Introduction

Web servers and their more impressively
named cousins, "Web Application
Frameworks", constitute the single most
important component of the network
content delivery system we know as
"The Web". The first Web Servers
started to appear in 1994 on UNIX®
systems on the Internet. The design of
those early systems reflects their UNIX
heritage. URLs (Uniform Resource
Locators) are equivalent to UNIX file
names. Each URL, when requested by a
client program, typically a "Web
Browser", is mapped to the UNIX file of
the same name, wrapped in HTTP
(HyperText Transport Protocol), and
delivered to the client. In those cases
where content cannot be represented as a
static file and needs to be dynamically
generated, the URL names the program
that is run to generate the content. This
capability, known as CGI (Common
Gateway Interface), stems from the
traditional UNIX practice of making
everything look like a file. Thus each
URL represents a file that either contains
the content, or contains the program that
is used to generate the content.

Background

Over the next five years the WEB saw
explosive growth, and the architecture of
the original Web Servers, though simple
and elegant, was beginning to strain.
Static content was still delivered
effectively by mapping URLs into files,
but dynamic content was becoming
problematic. The notion of programs as
files, as well as the mechanisms for
identifying, launching, managing, and
communicating with CGI programs is
very specific to the UNIX operating
system, which makes porting web
servers and their corresponding content
to non UNIX systems difficult. In
addition, as content management
techniques required more of the content
to be generated dynamically, even if
simply to paste together several static
files in response to a single URL, the
CGI programs rapidly became the
bottleneck. Each dynamic page requires
a separate program to be launched and
executed by the operating system, only
to be terminated each time a request is
completed. In addition, the communi-
cation between the Web Server and the
CGI program is very limited.

 2

Only the URL and its corresponding
HTTP envelope information is made
available to the CGI program, which can
only return content; the ability to pass
meta-information back to the server is
almost nonexistent.

The next state in the evolution of Web
servers focused on eliminating the CGI
bottleneck, specifically the program
creation and execution step required for
each URL requested. Generally, three
different approaches have been taken:
keeping the basic CGI interface, only
making it faster; building web server
specific APIs, often by requiring the
dynamic code generating portions to be
bound into the same process as the web
server; or defining language-specific
APIs whose implementations don't
require the overhead implied by the CGI
model.

The FastCgi interface tries to improve
the performance of the CGI specification
by eliminating the process creation and
execution step at every request, yet
maintaining backward compatibility
wherever possible. The FastCgi inter-
face, rep-resented by the file that maps
from the URL, is created and started
once when the web server starts.
Multiple requests for the same URL are
sent to the same FastCgi process by
defining a request packet protocol than
can accommodate multiple requests and
responses for each FastCgi process.
FastCgi has the advantage of preserving
a separate execution context for dynamic
content generation, while eliminating the
bulk of the process creation overhead of

traditional CGI programs. Consequently
FastCgi pro-grams are easily ported to
work with many different web servers.

The second approach to eliminating the
CGI bottleneck is to move the dynamic
content generation into the same
execution context as the server, by
expressing dynamic content generation
in terms of APIs that are specific to a
particular web server. This approach
eliminates the process creation and
execution overhead of CGI programs
entirely, but at the expense of close
coupling to a particular web server. Most
major web servers provide such API
definitions. However, dynamic content
generation using these APIs is rarely
portable to a different server. In addition,
by having the dynamic content
generation in the same execution context
as the server, a bug in a dynamic content
generation module can negatively impact
the entire web server, including URL
requests that have nothing to do with the
bug-containing module.

The third approach used to eliminate the
CGI bottleneck is to create a set of
language-specific APIs that can be
logically bound into the execution
context of the web server, yet be defined
in a web server independent way.
Servlets are the leading example of this
approach. A servlet is a JavaΤΜ program-
ming language that conforms to a
defined set of Java APIs, which can be
(and have been) implemented to provide
dynamic content for many different web
servers. Thus servlets combine the
advantages of FastCgi -- portability to

 3

different web servers -- with the close
coupling of server specific extensions.

The issues

Although all three approaches reduce the
performance problems associated with
the CGI interface, they still fun-
damentally retain the notion of a one-to-
one mapping between URLs and files,
where URLs are unrelated to each other.

As the web has grown, the notion that
every URL request and its associated file
is independent of any other request has
become a serious architectural
roadblock. It is now common for a single
Web "form" to be spread over multiple
pages (URLs), or for a single user to
have unique state associated with a
sequence of requests that may span days
or even years. Finally, as the sheer
volume of content on the web has
mushroomed, it is no longer appropriate
to assume, as is implicit in the CGI one-
file- per URL model, that the content
resides on the server machine at all. The
software architecture that was designed
to deliver individual pages in response to
URL requests is now being used to build
sophisticated applications, whose
content happens to be wrapped in HTTP.
Somewhere in the switch from
delivering static files as URLs to
creating full-blown applications, web
servers became web application
development frameworks.

As the need for more sophisticated
features has grown, so too have the
capabilities of the web servers used to
implement them. However, they are still

based on the original one file per request
architecture that was seemingly elegant
in the old days, but now just gets in the
way. To support these added
capabilities, the size and complexity of
the APIs has grown. The descendants of
the CGI architecture are stressed to
provide functionality that isn't a good fit
for their designs. As an example, a
recent Servlet API (2.0) needs over two
dozen classes and almost ten times that
many methods to describe its interface.

To be fair, the entire reason for the
explosion of interface complexity isn't
totally due to the complexity of the
interactions required by implementors of
the interface. As web servers have
become web application frameworks, the
notion that the same pile of content can
be delivered by any server has persisted.
Somehow the "content" is viewed as
separable from the server used to deliver
it. Consequently, every new web server
that arrives on the scene feels obliged to
incorporate every nuance and capability
of every previously deployed server, to
insure that pre-existing content can be
delivered with the new software without
change. This "feature-bloat" adds signif-
icantly to the size of the system, while
providing only a small increase in
capability.

A new vision for the web

As the web matures, we see a transition
away from the current client-server para-
digm, where browsers are clicking at
particular web sites, whose servers
deliver all the content on that site.
Instead, a more distributed model will

 4

emerge. In this new model, both the
traditional browsers and servers will still
exist, but the content received by the
client for a particular page is likely to
have been retrieved from several
traditional back-end servers, and
modified to suit the requirements and
desires of the particular client. This is
akin to a traditional workflow business
model, where the content passes through
various stages, and is transformed at
each stage.

Early versions of these intermediate
stages, we'll call them meta-servers, are
already starting to appear on the web.
Some of the meta-servers are called
"portals", and others are known as
"content aggregators". In our view,
portals and content-aggregators are one
in the same. Its looks like a portal when
viewed from the perspective of the
client, and a content aggregator from the
perspective of the traditional server
(we'll dub content-server).

As these meta-servers begin to play a
more prominent role in the infra-
structure, they will have a profound
impact on the way in which traditional
content-servers are constructed. No
longer will the content-server produce
both the content and its presentation
(look and feel). Meta-servers will
transform the content after it leaves the
content-server, allowing content-servers
to be simpler. Today's content-servers
not only provide the content, but manage
the presentation, user preferences, and
browser differences as well. In the
future, content-servers can be simpler,
providing just the content. The
integration with other content, as well as

the shaping of the look and feel for a
particular browser will be added in
stages by various meta-servers as the
content flows toward the ultimate
consumer.

Many types of content that are not
traditionally located on a web server will
become available. This new content, not
able to stand on its own in the traditional
web world, will be consumed by meta-
servers which will integrate it with
information from other content and
meta-servers. Devices, sensors, and
actuators will be accessible over the
web, and will have their information
integrated into the web fabric created by
the network of content-servers, devices,
and meta-servers.

Brazil

Brazil is a new architecture and sample
implementation for building both
content-servers and meta-servers. In the
content-server context it permits the
attachment of simple devices to the web
with the barest of capabilities, squeezing
into the tiniest places - a micro-server. In
the meta-server context, it provides rich
and flexible mechanisms for syn-
thesizing, transforming, and integrating
content: content retrieved both from
traditional content-servers as well as the
new breed of micro-servers. Finally, the
architecture provides capabilities to
integrate with traditional N-tier ap-
plications, providing the bridge between
the current client-server web into the
future.

 5

To achieve this two part goal, a two part
strategy is taken. The existing notion of
mapping URLs to UNIX files is aban-
doned. Modern URLs are too fluid to
have a fixed binding to underlying files.
Indeed, many small devices have no
notion of file systems at all. Specific
mechanisms used to implement existing
content-server capabilities are discarded.
For example, most traditional content-
servers use .htaccess files to provide
password protection for content. The file
based nature of the .htaccess me-
chanism is inappropriate for the Brazil
architecture, so .htaccess support is
not built-in. Password protected URLs
are still available, albeit via a different
mechanism.

The second part of the strategy is based
on defining a series of abstract capa-
bilities for Brazil that support the entire
range of applications, from the tiniest
micro-server to a more traditional
content-server to a sophisticated meta-
server. This determines an architecture
that starts with the small core and simple
interface for adding functionality
required for a micro-server im-
plementation, and adds to it a set of
composable, interchangeable modules
that can operate together in a scalable
way. With modules for manipulating
traditional file-based content, the
traditional content-server capability can
be obtained. By adding modules that can
string together arbitrary relationships
between users and pages, and combining
them with modules that can obtain and
manipulate foreign content, sophisticated
meta-servers are possible.

The Brazil architecture

Four key components and the inter-
relationships between them define the
Brazil architecture. These components
are described in the context of the
prototype implementation, written in the
Java programming language. Java
objects represent two of the components,
called Server and Request. The third
component, a Java interface definition
called a Handler, is the mechanism by
which functionality is added into Brazil.
The final Brazil component is the data
structure for managing the information
flow between the other parts, called the
Brazil properties, named after the Java
base class used in the prototype im-
plementation. The properties are the
name/value pairs that represent the
current state of a URL request, along
with methods for managing both the
lexical and temporal scope of the data.

Building micro-servers with Brazil

As content management capabilities are
shifted from traditional web servers to
meta-servers, the traditional web server
can focus entirely on the content it needs
to deliver. At the extreme, it becomes a
micro-server, delivering domain specific
content in a bare bones way. These
smaller, simpler servers can now be
attached to sources of content that
previously would be considered too
small or unimportant to justify their own
web servers. Examples include a digital
thermometer whose content consists of
the temperature of something, or a light
switch, whose content is either on or off.

 6

Although a web server whose content
consists entirely of "on" or "off" might
not make it into the website "top ten"
list, when used in conjunction with
meta-servers that can aggregate content
from this and hundreds or millions of
other similar servers, the content
suddenly becomes quite interesting.

We use the term UPI, which stands for
URL Programming Interface, to talk
about the capabilities of these micro-
servers. A UPI is just like an API, or
Application Programming Interface,
traditionally described in terms of
specific programming language
bindings, only UPI's are described in
terms of URLs. Taken in this light, a
URL no longer represents a file, instead
it represents a set of programmable
interfaces or remote procedure calls, that
happen to be accessible via HTTP.

Using Brazil as a micro-server becomes
defining a UPI for the desired func-
tionality, using the built-in HTTP
protocol stack as the transport
mechanism, and writing the code to
adapt the existing applications
functionality to the UPI.

The Server object is the simplest of the
four Brazil components. It represents the
information relevant for the life of the
Brazil server. This includes the port
number the server is contacted on, the
name of the handler (described below)
that will turn a URL request into content,
and an initial set of properties, used
by the handler (or handlers) to
satisfy an HTTP request. A Brazil
application may have one or more active

Servers, which usually operate
independently.

When a URL request arrives at the
server, it creates a Request object.
The Request contains all of the
information that pertains to client's URL
request as well as methods that
encapsulate the HTTP protocol. Then the
Server arranges for all information
pertinent to this URL request to be
added to the properties object.
Finally, the handler is called to
produce the content.

A handler is the interface that defines
how URLs get mapped into content. It
consists of two methods, init and
respond. When the Server starts, it
creates an instance of the handler, and
calls its init method, providing it with
a reference to the Server object. Each
time a Request object is created, in
response to an HTTP request, the
respond method is called, and supplied
the Request object as a reference. The
Handler examines the request, and by
using the methods in the Request

object, formulates an HTTP response.
Once the request has been satisfied, the
Request object is discarded.

If any parameters are required to
configure the handler, they are placed in
the "properties" when the server is
started. The handler can find its
configuration information either in the
Server object passed to the init

method, or in the Request object
provided with each request.

 7

The setup described so far is ideal for
"micro-server" applications. The Server

and Request objects provide the frame-
work for encapsulating and managing
HTTP requests, and the handler maps
the URLs onto device specific
functionality. There is little unused
infrastructure, and implementations can
be made quite small. Configuration
information required by the handler is
provided to the server at startup time,
and passed to the handler when its
methods are called.

Building meta-servers with Brazil

The creation of meta-servers , that
operate both as portals and content
aggregators, use the same framework,
and the identical interfaces as the micro-
server. However, instead of building a
system from a single handler that would
need to be modified or rewritten for each
new meta-server application, the meta-
server is constructed as a cooperating
collection of handlers, whose
arrangement and configuration can be
modified to provide a wide range of
capabilities.

Because the handler interface is so
small, it is easy to create a handler that
functions both as a consumer of the
handler interface, as in the micro-server
example above, and as a provider of the
handler interface. This insight lets us
create a handler that calls other handlers,
permitting multiple handlers to
participate in the processing of each
HTTP request. By combining these
"interior node" handlers with the simple,
or "leaf" handlers, a directed graph of

handlers can be created. This permits the
construction of meta-servers by
combining small bits of reusable
functionality together.

A simple yet powerful use of "interior
node" handlers in Brazil can be
illustrated by the Brazil ChainHandler ,
which chains together a list of other
handlers (possibly including other
ChainHandlers), forming the basic
mechanism for creating handler trees.

As indicated above, the data used to
configure the handler is placed into the
"properties" when the server is started.
As long as there is only one handler, this
scheme works fine. However, when
multiple handlers are used in the same
server, configuration collisions can
result either from different handlers
choosing the same name for a
configuration parameter, or the same
handler instantiated multiple times with
different configurations.

To overcome this limitation, con-
figuration properties for handlers are
statically scoped within the properties
to allow handlers that use the same
configuration property names to have
different values. Each "interior node"
handler is responsible for creating the set
of handlers that use it as the containing
side of the handler interface. When
each of the handlers is created, it is
assigned a name which it uses to identify
its configuration parameters, thus avoid-
ing any possibility of name collisions.

For a handler used in the "micro-server",
any request that is not dealt with

 8

explicitly results in the server sending
the requester an HTTP Not Found

response. In the meta-server case, where
multiple handlers have the opportunity
to examine and respond to an HTTP
request, a handler may alter the state of
the current HTTP request without
providing content to the requester. This
alteration can take the form of modifying
the configuration parameters of other
handlers by changing the appropriate
values in the "properties" object.

Because the "properties" is a stack, and
handlers typically retrieve their config-
uration properties from the top of the
stack, the duration over which a
handler's configuration is altered is
controllable by manipulating the
"properties" stack. In the common case,
changes one handler makes to another's
properties will only be in effect for the
duration of the current request.

A simple meta-server example

A common feature of many web servers
is to allow users on a timesharing system
to have their own private directory of
files that are delivered as URLs. URLs
that begin with /~joe would be
delivered from joe's private directory of
files instead of the main server directory.
While most servers have this special
capability built-in, the same effect is
easy to provide in Brazil with a pair of
handlers that co-operate with each
other. The FileHandler is used to
convert URLs into UNIX file names,
and deliver the content of the files to the
client. It is configured with a document

root, the directory in the file system that
acts as the root of the URL space.

To manage user's files, a "user-file"
Handler is run before the FileHandler.

If the URL starts with /~ the handler
modifies the request by changing the
URL by removing the user name
portion, and setting the FileHandler's
document root parameter in the
"properties" to the proper user's home
directory.

When the FileHandler gets the
request, it delivers the proper file from
the user's directory, based on the new
configuration parameters placed in the
"properties". When the next request
comes in, the new configuration
information will have been popped from
the properties stack, and be unaffected
by the previous modification. The same
file handling code is reused in a different
context.

Just as the "user-file" handler permits
reuse of existing capabilities, by
changing the "properties" to reconfigure
the server "on-the-fly" in response to a
particular request, other "handlers" use
the same technique to provide password
protection, session management, URL
mapping, and a host of other services.

Important components

Just having a mechanism for composing
handlers is not sufficient for creating a
full featured meta-server. That requires
many handlers, each performing a
different task, but working together to

 9

create a powerful content manipulation
environment. In this section we'll visit
some of the more important handlers and
describe how they work together to
create the Brazil meta-servers
environment.

The first class of handlers, of which the
FileHandler described above is an
example, can be used together to provide
the functionality of a traditional web
server, including delivering files,
running CGI scripts, providing password
protected pages, and interfacing to other,
non HTTP protocols such as LDAP or
JDBC. Sometimes the meta-server needs
to act as a traditional web server too.

The next class of handlers performs the
content aggregation capability required
by a meta-server. These handlers act as
HTTP clients and retrieve content from a
different server. The core of this cap-
ability is a fast proxy that implements
the client side of the HTTP protocol. The
ProxyHandler causes entire web sites
to appear as if the content were stored
locally in files. As each URL is retrieved
from a content-server, the contents are
examined, and every URL that points
back to the content-server is rewritten so
as to appear locally. When used in
conjunction with the FileHandler , the
ProxyHandler pro-vides the illusion of
a single UNIX filesystem, where
arbitrary sub-directories are actually
retrieved dynamically from other
servers. This capability, called "web
mount", provides an analogous set of
semantics as the "filesystem mount"

facility does for ordinary files in the
UNIX operating system.

Another interesting content aggregation
handler is designed for use with micro-
servers (or traditional web servers),
whose simple content needs to be
integrated with additional data in order
to be presented to the user in a
meaningful way. Content retrieved from
this handler is converted into a set of
name/value pairs and placed into the
"properties" for further processing. The
property values are then used by other
handlers to formulate the final response.
The content may be extracted from other
web sites synchronously each time a
request arrives, or in the background,
updated on a periodic basis. Using the
background method, the client doesn't
need to wait for the data to come from
the other server; the most recently
obtained values are used instead. An
interesting variation on the use of this
handler is the ability to provide micro-
servers that dynamically affect the
operation of the main server, by
returning values that represent config-
uration parameters of one or more
handlers in the main server.

The third category of handlers is used to
manipulate content once it has been
obtained. These handlers come in two
flavors, content extraction and content
integration. The content extraction
handlers use the HTML and XML
processing capabilities provided by
Brazil to analyze and decompose
content, and convert it into name/value

 10

pairs that are stored in the "properties".
It doesn't matter whether the content was
obtained locally, from a file, or remotely
from a remote content-server.

The content integration handlers also use
the HTML and XML processing cap-
abilities, but this time to insert the
previously extracted content into XML
templates for final delivery to the
requester. The "properties" are used as
the rendezvous location, not only to
characterize both the HTTP request and
the server configuration, but to hold
extracted content as well. Handlers can
access and manipulate all three kinds of
data in a uniform manner.

Handlers in the final category, unlike the
other handlers described so far, don't
participate directly in generating or man-
ipulating requests or responses. Instead,
they are used to insert alternate
implementations for key data structures
used by the server. For example, there is
an implementation of "properties" that
may be installed, with a handler, that
causes portions of the name/value pairs
to be stored and retrieved by a database,
providing horizontal scalability and per-
sistence for demanding applications.

Simply by rearranging handlers, and
changing the way they interact with each
other, a wide variety of web services can
be created, often without the need to
create new handlers. The following two
examples are typical of services that are
easily crafted using the current Brazil
implementation. The first Brazil micro-
server defined a UPI for accessing
smartcards. We were able to add

smartcard based identity, authentication,
and payment to several existing web-
sites, with only minor changes to the the
existing sites. As is often the case with
Brazil applications, we were able to
reuse the smartcard UPI in a totally
different context: combining it with the
Brazil public key Certificate Authority
handler to enable smartcard-
authenticated delivery of public key
certificates.

We built a micro-server that extracts
real-time sensor data from home
appliances, and a corresponding meta-
server that inserts the sensor data into
pages of an existing website, while not
requiring a single modification to the
original web site. From the perspective
of the user, the appliance sensor data
appears to be seamlessly integrated into
the original web site.

Summary

By using a simple interface, in
conjunction with powerful, reusable
components, the Brazil system is able to
deliver a wide range of flexible web
solutions, ranging from tiny micro-
servers, to traditional web capabilities to
fully functional meta-servers that
provide sophisticated portal and content
aggregation capabilities.

References
http://www.experimentalstuff.com/
A web site that uses, describes, and supplies
downloads of the current
Brazil prototype.

 11

